博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Scrapy开发
阅读量:6256 次
发布时间:2019-06-22

本文共 16632 字,大约阅读时间需要 55 分钟。

最近要开发一个软件需要爬取网站信息,于是选择了python 和scrapy下面做一下简单介绍:Scrapy安装,scrapy官网

所谓网络爬虫,就是一个在网上到处或定向抓取数据的程序,当然,这种说法不够专业,更专业的描述就是,抓取特定网站网页的HTML数据。不过由于一个网站的网页很多,而我们又不可能事先知道所有网页的URL地址,所以,如何保证我们抓取到了网站的所有HTML页面就是一个有待考究的问题了。

一般的方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样。

上面介绍的只是爬虫的一些概念而非搜索引擎,实际上搜索引擎的话其系统是相当复杂的,爬虫只是搜索引擎的一个子系统而已。下面介绍一个开源的爬虫框架Scrapy。

一、概述

Scrapy是一个用 Python 写的 Crawler Framework ,简单轻巧,并且非常方便,并且官网上说已经在实际生产中在使用了,不过现在还没有 Release 版本,可以直接使用他们的 Mercurial 仓库里抓取源码进行安装。

Scrapy 使用 Twisted 这个异步网络库来处理网络通讯,架构清晰,并且包含了各种中间件接口,可以灵活的完成各种需求。整体架构如下图所示:

绿线是数据流向,首先从初始 URL 开始,Scheduler 会将其交给 Downloader 进行下载,下载之后会交给 Spider 进行分析,Spider 分析出来的结果有两种:一种是需要进一步抓取的链接,例如之前分析的“下一页”的链接,这些东西会被传回 Scheduler ;另一种是需要保存的数据,它们则被送到 Item Pipeline 那里,那是对数据进行后期处理(详细分析、过滤、存储等)的地方。另外,在数据流动的通道里还可以安装各种中间件,进行必要的处理。

 

入门:

本文参考Scrapy Tutorial里面的文档,翻译出来加上自己的理解,供大家学习。

 

在本文中,我们将学会如何使用Scrapy建立一个爬虫程序,并爬取指定网站上的内容,这一切在Scrapy框架内实现将是很简单轻松的事情。

本教程主要内容包括一下四步:

1. 创建一个新的Scrapy Project

2. 定义你需要从网页中提取的元素Item
3. 实现一个Spider类,通过接口完成爬取URL和提取Item的功能
4. 实现一个Item PipeLine类,完成Item的存储功能

新建工程

首先,为我们的爬虫新建一个工程,首先进入一个目录(任意一个我们用来保存代码的目录),执行:

[python] 
 
  1. scrapy startproject Domz  

最后的Domz就是项目名称。这个命令会在当前目录下创建一个新目录Domz,结构如下:

[python] 
 
  1. dmoz/  
  2.    scrapy.cfg     
  3.    dmoz/  
  4.        __init__.py  
  5.        items.py  
  6.        pipelines.py  
  7.        settings.py  
  8.        spiders/  
  9.            __init__.py  
scrapy.cfg: 项目配置文件

items.py: 需要提取的数据结构定义文件

pipelines.py: 管道定义,用来对items里面提取的数据做进一步处理,如保存等
settings.py: 爬虫配置文件
spiders: 放置spider的目录

定义Item

在items.py里面定义我们要抓取的数据:

[python] 
 
  1. from scrapy.item import Item, Field  
  2.    
  3. class DmozItem(Item):  
  4.    title = Field()  
  5.    link = Field()  
  6.    desc = Field()  

这里我们需要获取dmoz页面上的标题,链接,描述,所以定义一个对应的items结构,不像Django里面models的定义有那么多种类的Field,这里只有一种就叫Field(),再复杂就是Field可以接受一个default值。

实现Spider

spider只是一个继承字scrapy.spider.BaseSpider的Python类,有三个必需的定义的成员

name: 名字,这个spider的标识

start_urls: 一个url列表,spider从这些网页开始抓取
parse(): 一个方法,当start_urls里面的网页抓取下来之后需要调用这个方法解析网页内容,同时需要返回下一个需要抓取的网页,或者返回items列表

所以在spiders目录下新建一个spider,dmoz_spider.py:

[python] 
 
  1. class DmozSpider(BaseSpider):  
  2.    name = "dmoz.org"  
  3.    start_urls = [  
  4.        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",  
  5.        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"  
  6.    ]  
  7.    
  8.    def parse(self, response):  
  9.        filename = response.url.split("/")[-2]  
  10.        open(filename, 'wb').write(response.body)  

提取Item

提取数据到Items里面,主要用到XPath提取网页数据:

scrapy有提供两个XPath选择器,HtmlXPathSelector和XmlXPathSelector,一个用于HTML,一个用于XML,XPath选择器有三个方法

select(xpath): 返回一个相对于当前选中节点的选择器列表(一个XPath可能选到多个节点)

extract(): 返回选择器(列表)对应的节点的字符串(列表)
re(regex): 返回正则表达式匹配的字符串(分组匹配)列表
一种很好的方法是在Shell里面对XPath进行测试:

[python] 
 
  1. scrapy shell http://www.dmoz.org/Computers/Programming/Languages/Python/Books/  

现在修改parse()方法看看如何提取数据到items里面去:

[python] 
 
  1. def parse(self, response):  
  2.       hxs = HtmlXPathSelector(response)  
  3.       sites = hxs.select('//ul/li')  
  4.       items = []  
  5.       for site in sites:  
  6.           item = DmozItem()  
  7.           item['title'] = site.select('a/text()').extract()  
  8.           item['link'] = site.select('a/@href').extract()  
  9.           item['desc'] = site.select('text()').extract()  
  10.           items.append(item)  
  11.       return items  

实现PipeLine

PipeLine用来对Spider返回的Item列表进行保存操作,可以写入到文件、或者数据库等。

PipeLine只有一个需要实现的方法:process_item,例如我们将Item保存到一个文件中:

[python] 
 
  1. def __init__(self):  
  2.     self.file = open('jingdong.txt''wb')  
  3.    
  4. def process_item(self, item, spider):  
  5.     self.file.write(item['title'] + '\t'+ item['link'] + '\t' + item['desc']+'\n')  

到现在,我们就完成了一个基本的爬虫的实现,可以输入下面的命令来启动这个Spider:

[python] 
 
  1. scrapy crawl dmoz.org  

Scrapy之URL解析与递归爬取:

 

前面介绍了Scrapy如何实现一个最简单的爬虫,但是这个Demo里只是对一个页面进行了抓取。在实际应用中,爬虫一个重要功能是”发现新页面”,然后递归的让爬取操作进行下去。

发现新页面的方法很简单,我们首先定义一个爬虫的入口URL地址,比如Scrapy入门教程中的start_urls,爬虫首先将这个页面的内容抓取之后,解析其内容,将所有的链接地址提取出来。这个提取的过程是很简单的,通过一个html解析库,将这样的节点内容提取出来,href参数的值就是一个新页面的URL。获取这个URL值之后,将其加入到任务队列中,爬虫不断的从队列中取URL即可。这样,只需要为爬虫定义一个入口的URL,那么爬虫就能够自动的爬取到指定网站的绝大多数页面。

当然,在具体的实现中,我们还需要对提取的URL做进一步处理:

1. 判断URL指向网站的域名,如果指向的是外部网站,那么可以将其丢弃

2. URL去重,可以将所有爬取过的URL存入数据库中,然后查询新提取的URL在数据库中是否存在,如果存在的话,当然就无需再去爬取了。

下面介绍一下如何在Scrapy中完成上述这样的功能。

我们只需要改写spider的那个py文件即可,修改parse()方法代码如下:

 

[python] 
 
  1. from scrapy.selector import HtmlXPathSelector  
  2.    
  3. def parse(self, response):  
  4.     hxs = HtmlXPathSelector(response)  
  5.     items = []  
  6.    
  7.     newurls = hxs.select('//a/@href').extract()  
  8.     validurls = []  
  9.         for url in newurls:  
  10.                 #判断URL是否合法  
  11.                 if true:  
  12.                         validurls.append(url)  
  13.    
  14.         items.extend([self.make_requests_from_url(url).replace(callback=self.parse) for url in validurls])  
  15.    
  16.         sites = hxs.select('//ul/li')  
  17.         items = []  
  18.         for site in sites:  
  19.                 item = DmozItem()  
  20.                 item['title'] = site.select('a/text()').extract()  
  21.                 item['link'] = site.select('a/@href').extract()  

新建工程

在抓取之前,你需要新建一个Scrapy工程。进入一个你想用来保存代码的目录,然后执行:

Microsoft Windows XP [Version 5.1.2600](C) Copyright 1985-2001 Microsoft Corp.T:\>scrapy startproject tutorialT:\>

这个命令会在当前目录下创建一个新目录tutorial,它的结构如下:

T:\tutorial>tree /fFolder PATH listingVolume serial number is 0006EFCF C86A:7C52T:.│  scrapy.cfg│└─tutorial    │  items.py    │  pipelines.py    │  settings.py    │  __init__.py    │    └─spiders            __init__.py

这些文件主要是:

  • scrapy.cfg: 项目配置文件
  • tutorial/: 项目python模块, 呆会代码将从这里导入
  • tutorial/items.py: 项目items文件
  • tutorial/pipelines.py: 项目管道文件
  • tutorial/settings.py: 项目配置文件
  • tutorial/spiders: 放置spider的目录

 

定义Item

Items是将要装载抓取的数据的容器,它工作方式像python里面的字典,但它提供更多的保护,比如对未定义的字段填充以防止拼写错误。

它通过创建一个scrapy.item.Item类来声明,定义它的属性为scrpy.item.Field对象,就像是一个对象关系映射(ORM). 

我们通过将需要的item模型化,来控制从dmoz.org获得的站点数据,比如我们要获得站点的名字,url和网站描述,我们定义这三种属性的域。要做到这点,我们编辑在tutorial目录下的items.py文件,我们的Item类将会是这样

from scrapy.item import Item, Field class DmozItem(Item):    title = Field()    link = Field()    desc = Field()

刚开始看起来可能会有些困惑,但是定义这些item能让你用其他Scrapy组件的时候知道你的 items到底是什么。

 

 

我们的第一个爬虫(Spider)

Spider是用户编写的类,用于从一个域(或域组)中抓取信息。

他们定义了用于下载的URL的初步列表,如何跟踪链接,以及如何来解析这些网页的内容用于提取items。

要建立一个Spider,你必须为scrapy.spider.BaseSpider创建一个子类,并确定三个主要的、强制的属性:

  • name:爬虫的识别名,它必须是唯一的,在不同的爬虫中你必须定义不同的名字.
  • start_urls:爬虫开始爬的一个URL列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些URLS开始。其他子URL将会从这些起始URL中继承性生成。
  • parse():爬虫的方法,调用时候传入从每一个URL传回的Response对象作为参数,response将会是parse方法的唯一的一个参数,

这个方法负责解析返回的数据、匹配抓取的数据(解析为item)并跟踪更多的URL。

 

这是我们的第一只爬虫的代码,将其命名为dmoz_spider.py并保存在tutorial\spiders目录下。

from scrapy.spider import BaseSpiderclass DmozSpider(BaseSpider):    name = "dmoz"    allowed_domains = ["dmoz.org"]    start_urls = [        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"    ]    def parse(self, response):        filename = response.url.split("/")[-2]        open(filename, 'wb').write(response.body)

 

为了让我们的爬虫工作,我们返回项目主目录执行以下命令

T:\tutorial>scrapy crawl dmoz

crawl dmoz 命令从dmoz.org域启动爬虫。 你将会获得如下类似输出 

T:\tutorial>scrapy crawl dmoz2012-07-13 19:14:45+0800 [scrapy] INFO: Scrapy 0.14.4 started (bot: tutorial)2012-07-13 19:14:45+0800 [scrapy] DEBUG: Enabled extensions: LogStats, TelnetConsole, CloseSpider, WebService, CoreStats, SpiderState2012-07-13 19:14:45+0800 [scrapy] DEBUG: Enabled downloader middlewares: HttpAuthMiddleware, DownloadTimeoutMiddleware, UserAgentMiddleware, RetryMiddleware, DefaultHeadersMiddleware, RedirectMiddleware, CookiesMiddleware, HttpCompressionMiddleware, ChunkedTransferMiddleware, DownloaderStats2012-07-13 19:14:45+0800 [scrapy] DEBUG: Enabled spider middlewares: HttpErrorMiddleware, OffsiteMiddleware, RefererMiddleware, UrlLengthMiddleware, DepthMiddleware2012-07-13 19:14:45+0800 [scrapy] DEBUG: Enabled item pipelines:2012-07-13 19:14:45+0800 [dmoz] INFO: Spider opened2012-07-13 19:14:45+0800 [dmoz] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)2012-07-13 19:14:45+0800 [scrapy] DEBUG: Telnet console listening on 0.0.0.0:60232012-07-13 19:14:45+0800 [scrapy] DEBUG: Web service listening on 0.0.0.0:60802012-07-13 19:14:46+0800 [dmoz] DEBUG: Crawled (200) 
(referer: None)2012-07-13 19:14:46+0800 [dmoz] DEBUG: Crawled (200)
(referer: None)2012-07-13 19:14:46+0800 [dmoz] INFO: Closing spider (finished)2012-07-13 19:14:46+0800 [dmoz] INFO: Dumping spider stats: {'downloader/request_bytes': 486, 'downloader/request_count': 2, 'downloader/request_method_count/GET': 2, 'downloader/response_bytes': 13063, 'downloader/response_count': 2, 'downloader/response_status_count/200': 2, 'finish_reason': 'finished', 'finish_time': datetime.datetime(2012, 7, 13, 11, 14, 46, 703000), 'scheduler/memory_enqueued': 2, 'start_time': datetime.datetime(2012, 7, 13, 11, 14, 45, 500000)}2012-07-13 19:14:46+0800 [dmoz] INFO: Spider closed (finished)2012-07-13 19:14:46+0800 [scrapy] INFO: Dumping global stats: {}

注意包含 [dmoz]的行 ,那对应着我们的爬虫。你可以看到start_urls中定义的每个URL都有日志行。因为这些URL是起始页面,所以他们没有引用(referrers),所以在每行的末尾你会看到 (referer: <None>). 

有趣的是,在我们的 parse  方法的作用下,两个文件被创建:分别是 Books 和 Resources,这两个文件中有URL的页面内容。 
发生了什么事情?

Scrapy为爬虫的 start_urls属性中的每个URL创建了一个 scrapy.http.Request 对象 ,并将爬虫的parse 方法指定为回调函数。 

这些 Request首先被调度,然后被执行,之后通过parse()方法,scrapy.http.Response 对象被返回,结果也被反馈给爬虫。

 

 

提取Item

选择器介绍

我们有很多方法从网站中提取数据。Scrapy 使用一种叫做 XPath selectors的机制,它基于 XPath表达式。如果你想了解更多selectors和其他机制你可以查阅资料http://doc.scrapy.org/topics/selectors.html#topics-selectors 

这是一些XPath表达式的例子和他们的含义

  • /html/head/title: 选择HTML文档<head>元素下面的<title> 标签。
  • /html/head/title/text(): 选择前面提到的<title> 元素下面的文本内容
  • //td: 选择所有 <td> 元素
  • //div[@class="mine"]: 选择所有包含 class="mine" 属性的div 标签元素

这只是几个使用XPath的简单例子,但是实际上XPath非常强大。如果你想了解更多XPATH的内容,我们向你推荐这个XPath教程

为了方便使用XPaths,Scrapy提供XPathSelector 类, 有两种口味可以选择, HtmlXPathSelector (HTML数据解析) 和XmlXPathSelector (XML数据解析)。 为了使用他们你必须通过一个 Response 对象对他们进行实例化操作。你会发现Selector对象展示了文档的节点结构。因此,第一个实例化的selector必与根节点或者是整个目录有关 。 

Selectors 有三种方法

  • select():返回selectors列表, 每一个select表示一个xpath参数表达式选择的节点.
  • extract():返回一个unicode字符串,该字符串为XPath选择器返回的数据
  • re(): 返回unicode字符串列表,字符串作为参数由正则表达式提取出来

尝试在shell中使用Selectors

为了演示Selectors的用法,我们将用到 内建的Scrapy shell,这需要系统已经安装IPython (一个扩展python交互环境) 。

附IPython下载地址:

要开始shell,首先进入项目顶层目录,然后输入

T:\tutorial>scrapy shell http://www.dmoz.org/Computers/Programming/Languages/Python/Books/

输出结果类似这样:

2012-07-16 10:58:13+0800 [scrapy] INFO: Scrapy 0.14.4 started (bot: tutorial)2012-07-16 10:58:13+0800 [scrapy] DEBUG: Enabled extensions: TelnetConsole, CloseSpider, WebService, CoreStats, SpiderState2012-07-16 10:58:13+0800 [scrapy] DEBUG: Enabled downloader middlewares: HttpAuthMiddleware, DownloadTimeoutMiddleware, UserAgentMiddleware, RetryMiddleware, DefaultHeadersMiddleware, RedirectMiddleware, CookiesMiddleware, HttpCompressionMiddleware, ChunkedTransferMiddleware, DownloaderStats2012-07-16 10:58:13+0800 [scrapy] DEBUG: Enabled spider middlewares: HttpErrorMiddleware, OffsiteMiddleware, RefererMiddleware, UrlLengthMiddleware, DepthMiddleware2012-07-16 10:58:13+0800 [scrapy] DEBUG: Enabled item pipelines:2012-07-16 10:58:13+0800 [scrapy] DEBUG: Telnet console listening on 0.0.0.0:60232012-07-16 10:58:13+0800 [scrapy] DEBUG: Web service listening on 0.0.0.0:60802012-07-16 10:58:13+0800 [dmoz] INFO: Spider opened2012-07-16 10:58:18+0800 [dmoz] DEBUG: Crawled (200) 
(referer: None)[s] Available Scrapy objects:[s] hxs
Introduction and overview of IPython's features.%quickref -> Quick reference.help -> Python's own help system.object? -> Details about 'object', use 'object??' for extra details.In [1]:

Shell载入后,你将获得回应,这些内容被存储在本地变量 response 中,所以如果你输入response.body 你将会看到response的body部分,或者输入response.headers 来查看它的 header部分。 

Shell也实例化了两种selectors,一个是解析HTML的  hxs 变量,一个是解析 XML 的 xxs 变量。我们来看看里面有什么:

In [1]: hxs.select('//title')Out[1]: [
Open Directory - Computers: Progr'>]In [2]: hxs.select('//title').extract()Out[2]: [u'
Open Directory - Computers: Programming: Languages: Python: Books']In [3]: hxs.select('//title/text()')Out[3]: [
]In [4]: hxs.select('//title/text()').extract()Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books']In [5]: hxs.select('//title/text()').re('(\w+):')Out[5]: [u'Computers', u'Programming', u'Languages', u'Python']In [6]:

 

 

提取数据

现在我们尝试从网页中提取数据。 

你可以在控制台输入 response.body, 检查源代码中的 XPaths 是否与预期相同。然而,检查HTML源代码是件很枯燥的事情。为了使事情变得简单,我们使用Firefox的扩展插件Firebug。更多信息请查看 和.
txw1958注:事实上我用的是Google Chrome的Inspect Element功能,而且可以提取元素的XPath。
检查源代码后,你会发现我们需要的数据在一个 <ul>元素中,而且是第二个<ul>。 
我们可以通过如下命令选择每个在网站中的 <li> 元素:

hxs.select('//ul/li')

然后是网站描述:

hxs.select('//ul/li/text()').extract()

网站标题:

hxs.select('//ul/li/a/text()').extract()

网站链接:

hxs.select('//ul/li/a/@href').extract()

如前所述,每个select()调用返回一个selectors列表,所以我们可以结合select()去挖掘更深的节点。我们将会用到这些特性,所以:

sites = hxs.select('//ul/li')for site in sites:    title = site.select('a/text()').extract()    link = site.select('a/@href').extract()    desc = site.select('text()').extract()    print title, link, desc

 

Note 

更多关于嵌套选择器的内容,请阅读 和 

将代码添加到爬虫中:

txw1958注:代码有修改,绿色注释掉的代码为原教程的,你懂的

from scrapy.spider import BaseSpider

from scrapy.selector import HtmlXPathSelector
class DmozSpider(BaseSpider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
]    
  
    def parse(self, response):
        hxs = HtmlXPathSelector(response)
        sites = hxs.select('//fieldset/ul/li')
        #sites = hxs.select('//ul/li')
        for site in sites:
            title = site.select('a/text()').extract()
            link = site.select('a/@href').extract()
            desc = site.select('text()').extract()
            #print title, link, desc
            print title, link

现在我们再次抓取dmoz.org,你将看到站点在输出中被打印 ,运行命令

T:\tutorial>scrapy crawl dmoz

 

 

使用条目(Item)

Item 对象是自定义的python字典,使用标准字典类似的语法,你可以获取某个字段(即之前定义的类的属性)的值:

>>> item = DmozItem() >>> item['title'] = 'Example title' >>> item['title'] 'Example title'

Spiders希望将其抓取的数据存放到Item对象中。为了返回我们抓取数据,spider的最终代码应当是这样:

from scrapy.spider import BaseSpiderfrom scrapy.selector import HtmlXPathSelectorfrom tutorial.items import DmozItemclass DmozSpider(BaseSpider):   name = "dmoz"   allowed_domains = ["dmoz.org"]   start_urls = [       "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",       "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"   ]   def parse(self, response):       hxs = HtmlXPathSelector(response)       sites = hxs.select('//fieldset/ul/li')       #sites = hxs.select('//ul/li')       items = []       for site in sites:           item = DmozItem()           item['title'] = site.select('a/text()').extract()           item['link'] = site.select('a/@href').extract()           item['desc'] = site.select('text()').extract()           items.append(item)       return items

现在我们再次抓取 : 

2012-07-16 14:52:36+0800 [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>        {'desc': [u'\n\t\t\t\n\t',                  u' \n\t\t\t\n\t\t\t\t\t\n - Free Python books and tutorials.\n \n'],         'link': [u'http://www.techbooksforfree.com/perlpython.shtml'],         'title': [u'Free Python books']}2012-07-16 14:52:36+0800 [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>        {'desc': [u'\n\t\t\t\n\t',                  u' \n\t\t\t\n\t\t\t\t\t\n - Annotated list of free online books on Python scripting language. Topics range from beginner to advanced.\n \n          '],         'link': [u'http://www.freetechbooks.com/python-f6.html'],         'title': [u'FreeTechBooks: Python Scripting Language']}2012-07-16 14:52:36+0800 [dmoz] DEBUG: Crawled (200) 
(referer: None)2012-07-16 14:52:36+0800 [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> {'desc': [u'\n\t\t\t\n\t', u' \n\t\t\t\n\t\t\t\t\t\n - A directory of free Python and Zope hosting providers, with reviews and ratings.\n \n'], 'link': [u'http://www.oinko.net/freepython/'], 'title': [u'Free Python and Zope Hosting Directory']}2012-07-16 14:52:36+0800 [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> {'desc': [u'\n\t\t\t\n\t', u' \n\t\t\t\n\t\t\t\t\t\n - Features Python books, resources, news and articles.\n \n'], 'link': [u'http://oreilly.com/python/'], 'title': [u"O'Reilly Python Center"]}2012-07-16 14:52:36+0800 [dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> {'desc': [u'\n\t\t\t\n\t', u' \n\t\t\t\n\t\t\t\t\t\n - Resources for reporting bugs, accessing the Python source tree with CVS and taking part in the development of Python.\n\n'], 'link': [u'http://www.python.org/dev/'], 'title': [u"Python Developer's Guide"]}

 

保存抓取的数据

保存信息的最简单的方法是通过,命令如下:

T:\tutorial>scrapy crawl dmoz -o items.json -t json

所有抓取的items将以JSON格式被保存在新生成的items.json 文件中

在像本教程一样的小型项目中,这些已经足够。然而,如果你想用抓取的items做更复杂的事情,你可以写一个 Item Pipeline(条目管道)。因为在项目创建的时候,一个专门用于条目管道的占位符文件已经随着items一起被建立,目录在tutorial/pipelines.py。如果你只需要存取这些抓取后的items的话,就不需要去实现任何的条目管道。

 

转载地址:http://tstsa.baihongyu.com/

你可能感兴趣的文章
oracle密码过期ORA-28002:口令将过期的解决方法
查看>>
webdriver css选取器
查看>>
浏览器窗口最大化
查看>>
B+树
查看>>
[转] Yslow-网站性能评分工具的图文解析
查看>>
简单工厂设计模式计算器
查看>>
WinFrom“动态”WebService
查看>>
【钢铁侠3】【高清1280版HD-RMVB.英语中字】【2013最新美国票房科幻动作大片】...
查看>>
Eclipse 修改JVM
查看>>
状态者模式 c#
查看>>
最长回文子串
查看>>
Node-mongodb链接数据库函数的封装
查看>>
在CentOS上简单安装tengine
查看>>
c语言——字符串变量、函数
查看>>
解决Type safety: The expression of type List needs
查看>>
POJ 3233 (矩阵)
查看>>
20161220
查看>>
11月27日
查看>>
Java位运算符
查看>>
智能手表ticwatch穿戴体验
查看>>